
1 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

FASTLab Music Analysis Kernel (FMAK)
Version 2.0

Analysis and Clustering Utilities
Technical Documentation

 Stephen Travis Pope
Alex Kouznetsov
September, 2004

TABLE OF CONTENTS

Introduction ... 2
The FMAK Analysis Driver .. 2
The Playlist Summary Application .. 3
The Batch Analysis Front-end .. 4
The FMAK Clusterer .. 4
The FMAK Database Extractor ... 7
Appendix A. SQL Database Table Formats .. 8
Appendix B. FC_IO DB-Writer File Formats .. 10
Appendix C. FMAK Database Setup and Management 13

Copyright FASTLab, Inc. 2004. Proprietary and confidential.

FASTLab Inc.
220 Santa Anita Rd.
Santa Barbara, California, 93105, USA
http://www.FASTLabInc.com

2 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

Introduction

This document describes the usage of the utility programs delivered with the FASTLab
Music Analysis Kernel (FMAK) software library. The associated programs are:

(1) the analysis driver used to create rows in a music analysis database;

(2) the batch analysis front-end used for running the analysis driver over lists of music
data files;

(3) the play-list summarizer application used for exporting song lists from Apple’s
iTunes music database for use with the batch analysis driver;

(4) the database clusterer, which finds clusters of similar feature collections in an
FMAK database; and

(5() the database extractor, which selects the genre representatives from a database
(after clustering) and produces a run-time flat file genre database dump.

The Appendices of the document describe the database management and file I/O for-
mats used by these utilities.

The FMAK Analysis Driver

Overview

The FMAK analysis driver utility provided as a part of the FMAK package performs the
necessary operations to load a sound file into memory, create the feature extraction data
structures, call the FMAK library analysis functions, and store the results into a relational
database. More information on the FMAK Library can be found in the FMAK Library
Technical Documentation. The Analysis Driver is often run in batch mode over large sets
of sound files, representing many CDs worth of material, however, single song analysis is
supported as well.

Program Operation

The analysis driver program is executed from scripts with command-line options to
configure the various analysis phases; these will determine the properties of the resulting
feature collection.

The command-line options are:
Analyzer

-s file_name # AIFF or WAV input file
window size and hop size for the RMS

-r rmsWindow_size rmsHop_size # time-domain analysis
-f fftWindow_size fftLen fftHop_size # for the FFT spectral analysis
-l lpcWindow_size lpcOrder lpcHop_size # for the LPC analysis
-w fwtWindow_size fwtLen fwtHop_size # for the wavelet analysis
-i artist album title genre # 4 strings for meta-data
 -d [DIRECTORY] # Specify the directory for FC dump
 -t # Displays the parsed command line and exits.
 -? # Displays a usagemessage
-p [host_name user_name password database_name]

PostgreSQL database parameters

Typical values for testing

3 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

Analyzer test.aiff -r 1024 4096 4 -f 4096 1024 8192 -l 2048 24 8192 -w 2048 1024 4096

or, to use all the defaults, just give the file name,

Analyzer test.aiff

or supply song metadata for batch database population

Analyzer -s song.aiff -i song_title artist_name album_name track

There are other options that are described in comments in the source code file Analysis-

Driver.cpp. More details of the analysis process are given in the FMAK library technical doc-
umentation.

The Playlist Summary Application

For building a large FMAK music database, an interface has been developed between
the Apple iTunes program and the FMAK analysis driver. This allows users to collect
music archives in iTunes libraries and then produce a script for running the FMAK analy-
sis driver over the entire iTunes library.

The application Playlist_Summary is a compiled AppleScript tool that processes an iTunes
music library database and creates a text file of its contents for use with the FMAK batch
analysis driver. To use the application, place it (the .app file) in your iTunes scripts folder
(typically, this will be ~/Library/iTunes/Scripts). Then start the script from within the iTunes
application using the scripts menu. The script will create a text file with listings for all of
the songs in your library. The file format is shown the following example. All of the text
up to the line that starts “%%” is a comment describing the file format; the following lines
are the first entry in the database. For each song, the file name, artist name, album/CD
name, track title, and musical genre (as given in iTunes), are each listed on separate lines.
Song entries are separated by a blank line.

Playlist SUMMARY • Monday, May 3, 2004 • 3332 tracks

LOCATION
ARTIST
ALBUM
TRACK
GENRE

%%
/Volumes/BigNoise/EMA/iTunes/Compilations/Dance/01 Play The Song.aif
2 Fabiola
Dance Dance Dance
Play The Song
Electronica/Dance

4 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

...other songs follow here...

The Batch Analysis Front-end

A separate small program is included with the FMAK utilities to take the song listing
file described above and call the analysis driver program for each entry in the content
database (i.e., the iTunes library). The Batch_Processor program is usually executed from a
UNIX command-line shell after the playlist summary file is dumped from iTunes. The
shell command to do this looks like the following.

Batch_Processor database_summary_file_name.txt [path_to_FMAK_Analyzer]

In this command, the first argument is required and is the name of the playlist sum-
mary file; the second (optional) argument is the file path to the FMAK analysis driver; it
defaults to "./" meaning that the batch processor expects a file in the local directory called
Analyzer.

Note that this process can take quite a long time (up to several days) for large data-
bases. It is often useful to split a playlist summary file into several pieces and run the
analysis process on several computers at once.

The FMAK Clusterer

The FMAK database clusterer is a development/training tool designed to aid in find-
ing the representative songs within the EMA database. The clusterer operates as a stand-
alone executable and accesses the data in the SQL database that has been populated by the
EMA database driver running the analysis on the set of all songs. The clusterer produces a
cluster id label for each song that is stored back in the database table.

The clusterer is a full-featured multi-stage clustering algorithm implementation opti-
mized for the specific requirements of EMA application:

• Optimized for large databases (uses a pre-clustering stage)

• Good performance with irregularly shaped clusters and over wide cluster size varia-
tion

• Low sensitivity to outliers

The EMA clusterer is almost entirely based on the CURE clustering algorithm as
described in S. Guha, R. Rastogi, and K. Shim. “CURE: An efficient clustering algorithm
for large databases.” In Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pages 73--84, New York, 1998.

CURE employs a novel hierarchical clustering algorithm that adopts a middle ground
between the centroid-based and the all-point extremes. In CURE, a constant number c of
well-scattered points in a cluster are first chosen. The scattered points capture the shape
and extent of the cluster. The chosen scattered points are next shrunk towards the cen-
troid of the cluster by a fraction alpha. These scattered points after shrinking are used as
representatives of the cluster. The clusters with the closest pair of representative points
are the clusters that are merged at each step of CURE's hierarchical clustering algorithm.

The scattered points approach alleviates the shortcomings of both the all-points as well

5 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

as the centroid-based approaches. CURE is less sensitive to outliers since shrinking the
scattered points toward the mean dampens the adverse effects due to outliers; outliers are
typically further away from the mean and are thus shifted a larger distance due to the
shrinking. Multiple scattered points also enable CURE to discover non-spherical clusters.
For the centroid-based algorithm, the space that constitutes the vicinity of the single cen-
troid for a cluster is spherical. Thus, it favors spherical clusters and splits the elongated
clusters. On the other hand, with multiple scattered points as representatives of a cluster,
the space that forms the vicinity of the cluster can be non-spherical, and this enables
CURE to correctly identify such clusters.

Note that the kinds of clusters identified by CURE can be tuned by varying alpha
between 0 and 1.CURE reduces to the centroid-based algorithm if alpha = 1, while for
alpha = 0, it becomes similar to the all-points approach. CURE's hierarchical clustering
algorithm uses space that is linear in the input size n and has a worst-case time complex-
ity of O(n2 log n). For lower dimensions (e.g., two), the complexity can be shown to fur-
ther reduce to O(n2). Thus, the time complexity of CURE is no worse than that of the cen-
troid-based hierarchical algorithm.

The clustering algorithm starts with each input point as a separate cluster, and at each
successive step merges the closest pair of clusters. In order to compute the distance
between a pair of clusters, for each cluster, c representative points are stored. These are
determined by first choosing c well-scattered points within the cluster, and then shrink-
ing them toward the mean of the cluster by a fraction alpha. The distance between two
clusters is then the distance between the closest pair of representative points – one belong-
ing to each of the two clusters. Thus, only the representative points of a cluster are used to
compute its distance from other clusters.

The c representative points attempt to capture the physical shape and geometry of the
cluster. Furthermore, shrinking the scattered points toward the mean by a factor alpha
gets rid of surface abnormalities and mitigates the effects of outliers. The reason for this is
that outliers typically will be further away from the cluster center, and as a result, the
shrinking would cause outliers to move more toward the center while the remaining rep-
resentative points would experience minimal shifts. The larger movements in the outliers
would thus reduce their ability to cause the wrong clusters to be merged. The parameter
alpha can also be used to control the shapes of clusters. A smaller value of alpha shrinks
the scattered points very little and thus favors elongated clusters. On the other hand, with
larger values of alpha, the scattered points get located closer to the mean, and clusters
tend to be more compact.

Optimizations

Analysis of not well-separated clusters in large-scale databases presents the problem of
computational complexity. If the distance between a pair of clusters is small, then having
a simpler solution of sampling a fraction for each of them may not enable the clustering
algorithm to distinguish them. The reason for this is that the sampled points for a cluster
may not be uniformly distributed and points across clusters may end up becoming closer
to one another than points within the cluster. As the separation between clusters
decreases and as clusters become less densely packed, samples of larger sizes are required
to distinguish them. However, as the input size n grows, the computation that needs to be
performed by the clustering algorithm could end up being fairly substantial due to the

6 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

O(n2 log n) time complexity.

Given the total number of input data points n, the basic idea is to partition the sample
space into p partitions, each of size n/p. We then partially cluster each partition until the
final number of clusters in each partition reduces to n/(p*q) for some constant q > 1.
Alternatively, we could stop merging clusters in a partition if the distance between the
closest pair of clusters to be merged next increases above a certain threshold. Once we
have generated n/(p*q) clusters for each partition, we then run a second clustering pass
on the n/q partial clusters for all the partitions (that resulted from the first pass). The
advantage of partitioning the input is a substantial reduction in the computation complex-
ity.

Running the Clusterer

The clusterer can be executed from the command line with following parameters:
Clusterer [REQUIRED_FLAGS] [OPTIONAL_FLAGS]

Where the following required and optional flags are supported:

-p [NUM] Number of pre-clustering partitions, see ‘p’ parameter above
-q [NUM] Pre-clustering partition factor, see ‘q’ parameter above
-k [NUM] Desired number of clusters before stopping. Clusterer will continue

merging clusters until k or less are left.
-c [NUM] Number of well-scattered representatives per cluster, see ‘c’

parameter above.
-a [NUM] Representative scaling factor, see ‘alpha’ parameter above
-u [STR] Database user name
-s [STR] Database password

(optional)
-t Display parsed command parameters and exit. For testing purposes only.
-? Display help message

Typical Values for these (for a database of approx. 3000 songs) are
Clusterer -p 5 -q 5 -k 30 -c 10 -a 1 -u user_name -s db_password -t

The specific values of these parameters are dependent on the size of database and more
importantly, on the type of clustering result desired. More details on the clusterer imple-
mentation can be found in the CURE paper cited above.

Clusterer Database Interface

The clusterer uses the Analysis Results database for data input, labelling during cluster-

Figure 1. EMA Clusterer operation workflow.

7 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

ing, and output. Clusterer reads the pertinent data from all song for which ClusteringStatus

field is set to “X”. The default value for ClusteringStatus is “O”; such songs will be ignored by
the clusterer. Therefore, prior to executing the clusterer, the appropriate subset of song
must be marked with ClusteringStatus = “X”. For clustering, the selected database subset can-
not contain songs with duplicate name and data as those will interfere with proper opera-
tion of K-D trees used for cluster merging.

When clustering is complete, a number of different values may be assigned to the Clus-

teringStatus field:

-- After building from scratch, to have all records used by the clusterer, do this

update FeatureCollections set ClusteringStatus = 'X' where ClusteringStatus != 'X';

-- To look at the list of final cluster representatives, do this

select artist, title from FeatureCollections where ClusteringStatus = 'F';

-- Get min/avg/max of RMS statistics for average and peak feature tables using joins

SELECT max(RMS), avg(RMS), min(RMS) FROM FeatureTables, FeatureCollections
where FeatureCollections.AvgFT = FeatureTables.oid;

SELECT max(RMS), avg(RMS), min(RMS) FROM FeatureTables, FeatureCollections
where FeatureCollections.WeightedFT = FeatureTables.oid;

The FMAK Database Extractor

The final utility used by FMAKL applications is the database extractor; this is a small
program that searches through the FMAK database for songs with the clustering status
flag set to ‘F’ -- meaning that they have been identified as genre cluster representatives.
The number of these genre representatives is chosen by the arguments to the clusterer.
Once they are found, the DB extractor simply writes their feature tables out in flat binary
format to a file named cluster_db.fmak. The command line for the DB extractor takes no
arguments; it is executed simply as,

DBExtractor

8 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

Appendix A. SQL Database Table Formats

The following is the SQL table definition code for the FMAK database. Both the analy-
sis driver and the clusterer use these database tables.

-- FMAK 2 Database Table Definition File

-- PostgresSql table definitions for FMAK databases

--
-- (C) Copyright FASTLab Inc. 2003. All rights reserved.
-- THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE
-- The copyright notice above does not evidence any
-- actual or intended publication of such source code.

-- Feature Table Table
-- this stores the individual feature tables that make up a song's feature collection

DROP TABLE FeatureTables;

CREATE TABLE FeatureTables (
Time real, -- start time of the table
Duration real, -- the table's duration
RMSWindowSize integer, -- time-domain features
RMS real,
Peak real,
LPRMS real,
HPRMS real,
ZeroCrossings integer,
DynamicRange real,
StereoWidth real, -- spatial-domain features
SurroundDepth real,
CenterCorrelation real,
FFTWindowSize integer, -- spectral-domain features
SpectralCentroid real,
SpectralSlope real,
SpectralVariety real,
SpectralBands real[], -- 4-band spectrum
HiFreqBalance real, -- hi-frequency properties
HiFreqVariety real,
HiFreqCorrelation real,
STrackBirths real, -- spectral track data
STrackDeaths real,
LPCWindowSize integer, -- LPC data
LPCresidual real,
LTrackBirths real,
LTrackDeaths real

);

GRANT ALL on FeatureTables TO fmak;

9 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

-- Feature Collection Table -- there is one of these per song

DROP TABLE FeatureCollections;

CREATE TABLE FeatureCollections (
Name text, -- name string
Album text,
Artist text,
Title text,
Genre text, -- should be a list of related genres
Version integer, -- version of the recording or analysis
AnalyzedOn timestamp,
Year integer, -- year of the recording
Duration float,
AvgFT integer, -- average and peak feature tables
WeightedFT integer,
TypicalFT integer,
Tempo integer, -- average tempo
Segments real[], -- segmentation data
SegmentWeight real,
VerseLength real,
FirstVerseStart real,
VerseWeight real,
FadeIn real, -- fade in/out times
FadeOut real,
QuietSecs real,
RepeatSecs real,
ClusteringStatus char(1) DEFAULT 'O' CHECK (ClusteringStatus in ('O', 'X', 'P', 'R', 'C', 'F')),

-- used by the clusterer
ClusterId int DEFAULT 0 -- used by the clusterer

);

GRANT ALL on FeatureCollections TO fmak;

-- Genre Table -- this is the network of musical genres built by the clusterer

DROP TABLE Genres;

CREATE TABLE Genres (
Name text, -- name string
Parent integer, -- parent's id
siblings integer[], -- path of [sibling-id -> distance weighting]
siblingDistances real[]

);

GRANT ALL on Genres TO fmak;

10 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

Appendix B. FC_IO DB-Writer File Formats

For run-time applications (such as the Expert Mastering Assistant), it is often required
to store FMAK feature collections in flat binary files. A special file format has been
designed and implemented for this purpose. The FC_IO file format uses two data struc-
tures, one that maps onto a FeatureTable, and one for storing FeatureCollections. These
each map directly onto the C++ class definitions, as shown in the C data structure declara-
tions below.

// The data structure used to store feature tables in flat binary files.
// These structures are all that is visible to the run-time application.
// They are structs rather than classes so we can use them with fread/fwrite.

typedef struct {
FeatureDatum mRMS; // Rectangular-windowed RMS amplitude
FeatureDatum mPeak; // Max sample amplitude
FeatureDatum mLPRMS; // RMS amplitude of LP-filtered signal
FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal
FeatureDatum mZeroCrossings; // Count of zero crossings
FeatureDatum mDynamicRange; // RMS dynamic range of sub-windows
FeatureDatum mPeakIndex; // RMS peak sub-window index
FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate
FeatureDatum mTimeSignature; // Time signature guess
FeatureDatum mBassPitch; // Bass pitch guess in Hz
FeatureDatum mBassNote; // Bass note (MIDI key number) guess
FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)
FeatureDatum mStereoWidth; // L/R difference
FeatureDatum mSurroundDepth; // Front/Surround difference
FeatureDatum mCenterDistinction; // Center vs. L/R sum difference
FeatureDatum mBandSpectrum[4]; // 2.5-octave FFT data (4 points -- spectral bands)
FeatureDatum mSpectralCentroid; // Spectral centroid measure
FeatureDatum mSpectralSlope; // Spectral slope measure
FeatureDatum mSpectralVariety; // Inter-frame spectral variety measure
FeatureDatum mSTrackBirths; // Spectral peak track births
FeatureDatum mSTrackDeaths; // Spectral peak track deaths
FeatureDatum mLPCResidual; // LPC residual level (noisiness)
FeatureDatum mLPCPitch; // Pitch estimate
FeatureDatum mLTrackBirths; // LPC formant peak track births
FeatureDatum mLTrackDeaths; // LPC formant peak track deaths

} FeatureTableStruct;

// The data structure used to store feature collections in flat binary files

typedef struct {
char * mName, * mArtist, * mTitle, * mAlbum, * mGenre;
FeatureDatum mSampleRate;
FeatureDatum mDuration;
FeatureDatum mNumSegments;
FeatureDatum mSegmentWeight;

11 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

FeatureDatum mVerseLen;
FeatureDatum mFirstVerse;
FeatureDatum mQuietSections;
FeatureDatum mLoudSections;
FeatureDatum mRepeatSections;
FeatureDatum mFadeIn;
FeatureDatum mFadeOut;
FeatureTableStruct * mAvgData; // the average and peak feature tables
FeatureTableStruct * mWeightedData;

} FeatureCollectionStruct;

The C++ methods to write out a feature collection into a flat binary file is given below
as an example. The reader side is quite simple, and is included in the FMAK source file
FC_IO.cpp.

#define FC_IO_WRITE_STRING(MEMBER_NAME) \
fprintf(output, "%s\n", mFeatureCollection->MEMBER_NAME)

#define FC_IO_WRITE_DATUM(MEMBER_NAME) \
num_written = fwrite(& mFeatureCollection->MEMBER_NAME, \

sizeof(FeatureDatum), 1, output); \
if (num_written != 1) result = false;

// Writer method

bool FC_IO :: write_FC() {
if (mDirectory.empty())

mDirectory += FC_IO_DEFAULT_NAME;
FILE * output = fopen(mDirectory.c_str(), "w");
if (output == NULL) {

printf("Error opening output file\n");
return false;

}
size_t num_written;
bool result = true;

// write the string header fields on separate lines
FC_IO_WRITE_STRING(mName);
FC_IO_WRITE_STRING(mArtist);
FC_IO_WRITE_STRING(mTitle);
FC_IO_WRITE_STRING(mAlbum);
FC_IO_WRITE_STRING(mGenre->mName);

// write the feature collection numerical data
FC_IO_WRITE_DATUM(mDuration);
FC_IO_WRITE_DATUM(mSampleRate)
FC_IO_WRITE_DATUM(mSegmentWeight)
FC_IO_WRITE_DATUM(mVerseLen)
FC_IO_WRITE_DATUM(mFirstVerse)
FC_IO_WRITE_DATUM(mQuietSections)
FC_IO_WRITE_DATUM(mLoudSections)
FC_IO_WRITE_DATUM(mRepeatSections)

12 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

FC_IO_WRITE_DATUM(mFadeIn)
FC_IO_WRITE_DATUM(mFadeOut)

// now write the peak and average feature tables in their compact format
if (result)

result = this->write_FT(mFeatureCollection->mWeightedData, output);
if (result)

result = this->write_FT(mFeatureCollection->mAvgData, output);
fclose(output);
return result;

}

// Write a feature table as a binary structure

bool FC_IO :: write_FT(const FeatureTable & ft, FILE * output) {
FeatureTableStruct out_fv;
out_fv.mRMS = ft.mRMS;
out_fv.mPeak = ft.mPeak;
out_fv.mLPRMS = ft.mLPRMS;
out_fv.mHPRMS = ft.mHPRMS;
out_fv.mZeroCrossings = (float) ft.mZeroCrossings;
out_fv.mDynamicRange = ft.mDynamicRange;
out_fv.mPeakIndex = ft.mPeakIndex;
out_fv.mTempo = ft.mTempo;
out_fv.mTimeSignature = ft.mTimeSignature;
out_fv.mBassPitch = ft.mBassPitch;
out_fv.mBassNote = (float) ft.mBassNote;
out_fv.mBassDynamicity = ft.mBassDynamicity;
out_fv.mStereoWidth = ft.mStereoWidth;
out_fv.mSurroundDepth = ft.mSurroundDepth;
out_fv.mCenterDistinction = ft.mCenterDistinction;
for (unsigned i = 0; i < 4; i++)

out_fv.mBandSpectrum[i] = ft.mBandSpectrum[i];
out_fv.mBandSpectrum[4] = ft.mBandSpectrum[0];
out_fv.mSpectralCentroid = ft.mSpectralCentroid;
out_fv.mSpectralSlope = ft.mSpectralSlope;
out_fv.mSpectralVariety = ft.mSpectralVariety;
out_fv.mSTrackBirths = ft.mSTrackBirths;
out_fv.mSTrackDeaths = ft.mSTrackDeaths;
out_fv.mLPCResidual = ft.mLPCResidual;
out_fv.mLPCPitch = ft.mLPCPitch;
out_fv.mLTrackBirths = ft.mLTrackBirths;
out_fv.mLTrackDeaths = ft.mLTrackDeaths;

size_t num_written = fwrite(& out_fv, sizeof(FeatureTableStruct), 1, output);
if (num_written == 1)

return TRUE;
else

return FALSE;
}

13 FASTLAB, INC. PROPRIETARY AND CONFIDENTIAL FASTLab Music Analysis Kernel

Appendix C. FMAK Database Setup and Management

Installing and using Postgresql

See the excellent step-by-step instructions at
http://developer.apple.com/internet/opensource/postgres.html

Setup commands after installing postgresql
sudo mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
sudo -u postgres initdb -D /usr/local/pgsql/data
sudo -u postgres createdb FMAK
sudo -u postgres createuser -d -a -P fmak

use password "KAMF"

Load the table definitions file (in this directory) into the DB
psql -d FMAK -f FMAK_Tables.sql

To use the stored-procedures you also have to create the plpgsql language:
sudo -u postgres createlang -d FMAK plpgsql

Testing

After running some analysis, you can look at the DB contents with the commands
psql -d FMAK

and type SQL
select * from FeatureTables;

or
select * from FeatureCollections;

type ctrl-d to exit pgsql

Maintenance

For routine maintenance
vacuumdb -d FMAK

For backing up the database
cd /usr/local/pgsql
sudo tar cvfz ~/db_backup.tgz data

