
The Siren Music/Sound Package for Squeak Smalltalk

Stephen Travis Pope
Center for Research in Electronic Art Technology, Dept. of Music

U. C. Santa Barbara, Santa Barbara, CA, 93106 USA
+1 805 967-2621

stp@create.ucsb.edu

ABSTRACT

The Siren system is a general-purpose music composition
and production framework integrated with Squeak Smalltalk
(1); it is a re-implementation of the Musical Object Devel-
opment Environment (MODE) (5), the software component
of the on-going "Interim DynaPiano" project. Siren is a
Smalltalk class library (about 200 classes) for building mu-
sical applications; it runs on a variety of platforms with
support for MIDI and audio I/O. Siren's source code is
available for free on the Internet; see the Siren home page at
the URL http://www.create.ucsb.edu/htmls/siren.html.

Keywords
Computer music, DSP, Smalltalk, multimedia, representa-
tion languages

THE SIREN SYSTEM
There are several elements to Siren:

• the Smoke music representation (music magnitudes,
events, event lists, generators, functions, and sounds);

• voices, schedulers and I/O drivers (real-time and file-based
voices for sound and MIDI I/O);

• user interface components for musical applications (UI
framework, widgets, and tools); and

• several built-in applications (editors and browsers for
Siren objects).

 Siren's predecessors (The HyperScore ToolKit and the
MODE) are documented in the book "The Well-Tempered
Object: Musical Applications of Object-Oriented Software
Technology" (5), in papers in the Proceedings of the 1986,
1987, 1989, 1991, 1992, 1994, 1996, and 1997 Interna-
tional Computer Music Conferences (ICMCs), in an article
on the Interim DynaPiano in Computer Music Journal
16:3, 1992, and in the book Musical Signal Processing (6)
Most of these, and related documents are available from the
URL http://www.create.ucsb.edu/~stp/publ.html.

 The 1998 OOPSLA Siren poster concentrates on (a) the
Smoke music description language, (b) the real-time MIDI
and sound I/O facilities implemented using the Squeak
Smalltalk-to-C translator and VM support, and (c) the Mor-
phic-based GUIs for the 2.2 version of Siren. The demon-
stration will use an Apple laptop with MIDI and sound I/O.

 

 

 

 The Smoke Music Representation Language
 The "kernel" of Siren is the set of classes for music magni-
tudes, functions and sounds, events, event lists and event
structures known as the Smallmusic Object Kernel (Smoke)
music representation. Smoke is described in terms of two
related description languages (music input languages), a
compact binary interchange format, and concrete data struc-
tures. The high-level packages of Siren—voices,
sound/DSP, compositional structures, and the user interface
framework—interoperate using Smoke event lists. Smoke
supports the following levels of description:

• abstract models of the basic musical quantities (scalar
magnitudes such as pitch, loudness or duration);

• instrument/note (e.g., voice/event, performer/score) ab-
stractions;

• sound functions, granular description, or other (non-note-
oriented) description abstractions;

• flexible grain-size of "events" in terms of "notes,"
"grains," "elements," or "textures;"

• event, control, and sampled sound description levels;
• nested/hierarchical event-tree structures for flexible de-

scription of "parts," "tracks," or other parallel or sequen-
tial organizations;

• separation of "data" from "interpretation" (what vs. how
in terms of providing for interpretation objects);

• abstractions for the description of "middle-level" musical
structures (e.g., chords, clusters, or trills);

• annotation of event tree structures supporting the creation
of heterarchies (lattices) and hypermedia networks;

• annotation including common-practice notation possible;
• description of sampled sound synthesis and processing

models such as sound file mixing or DSP;
• possibility of building converters for many common

formats, such as MIDI data, note lists, DSP code, or mix-
ing scripts (this is an application issue); and

• possibility of parsing live performance into Smoke, and
of interpreting it (in some rendition) in real-time (this is
an application issue).

Smoke objects also have behaviors for managing several
special types of links, which are seen simply as properties
where the property name is a symbol such as usedToBe,
isTonalAnswerTo, or obeysRubato, and the property value
is another Smoke object, e.g., an event list. With this facil-
ity, one can built multimedia hypermedia navigators for
arbitrary Smoke networks. The three example link names
shown above could be used to implement event lists with



version history, to embed analytical information in scores,
or to attach real-time performance controllers to event lists,
respectively.

The poster presentation will give extended examples of
Smoke usage.

Siren I /O
The "performance" of events takes place via Voice objects.
Event properties are assumed to be independent of the pa-
rameters of any synthesis instrument or algorithm. A voice
object is a "property-to-parameter mapper" that knows
about one or more output or input formats for Smoke data.
There are voice "device drivers" for common file storage
formats—such as cmusic note lists, the Adagio language,
MIDI file format, or phase vocoder scripts—or for use with
real-time schedulers connected to MIDI or sampled sound
drivers. These classes can be refined to add new event and
signal file formats or multilevel mapping (e.g., for MIDI
system exclusive messages) in an abstract way. Voice ob-
jects can also read input streams (e.g., real-time controller
data or output from a coprocess), and send messages to
other voices, schedulers, event modifiers or event genera-
tors. This is how one uses the system for real-time control
of complex structures.

Real-time music I/O in Siren is managed by Squeak primi-
tive interfaces to sound and MIDI OS-level drivers. The
glue code for these primitives is written in Smalltalk and
translated to C for linking with the Squeak virtual machine
(itself written in Smalltalk and translated). Several sets of
primitives exist for Squeak on various platforms, including
support for sound synthesis, digital audio signal processing,
MIDI event-oriented and continuous controller I/O, and
VM-level scheduling.

Navigator MVC in Siren
The Smalltalk-80 Model-View-Controller (MVC) user in-
terface paradigm (2), is well-known and widely imitated.
The traditional three-part MVC architecture involves a
model object representing the state and behavior of the do-
main model—in our case, an event list or signal. The view
object presents the state of the model on the display, and
the controller object sends messages to the model and/or the
view in response to user input.

"Navigator MVC" (4) (see the figure) is a factoring of the
controller/editor and view for higher levels of reuse. The
fundamental feature of this architecture is that all applica-
tions are built as display list editors (i.e., the generic tool is
"smart draw"), with special layout manager objects for
translating the model structure into a graphical display list
representation and for translating structure interaction into
model manipulation.

A StructureAccessor is an object that acts as a translator or
protocol converter. An example might be an object that
responds to the typical messages of a tree node or member
of a hierarchy (e.g., What's your name? Do you have and
children/sub-nodes? Who are they? Add this child to them.).
One specific, concrete subclass of this might know how to
apply that language to navigate through a hierarchical event

list (by querying the event list's hierarchy). The role of the
LayoutManager object is central to building Navigator
MVC applications. Siren's layout manager objects can take
data structures (like event lists) and create display lists for
time-sequential (i.e., time running left-to-right or top-to-
bottom), hierarchical (i.e., indented list or tree-like), net-
work or graph (e.g., transition diagram), or other layout
formats. The editor role of Navigator MVC is played by a
smaller number of very generic (and therefore reusable) ob-
jects such as EventListEditor or SampledSoundEditor,
which are shared by most of the applications in the system.

Figure: Navigator MVC Architecture

Much of the work of building a new tool within the MODE
often goes into customizing the interaction and manipula-
tion mechanisms, rather than just the layout of standard
pluggable view components. Building a new notation by
customizing a layout manager class and (optionally) a view
and controller, is relatively easy. Adding new structure ac-
cessors to present new perspectives of structures based on
properties or link types can be used to extend the range of
applications and to construct new hypermedia link naviga-
tors. This architecture means that views and controllers are
extremely generic (applications are modeled as structured
graphics editors), and that the bulk of many applications'
special functionality resides in a small number of changes
to existing accessor and layout manager classes.

The Siren implementation of Navigator MVC is integrated
with the Morphic (3) graphics framework.

REFERENCES
1. Ingalls, D., T. Kaehler, J. Maloney, S. Wallace, and A.
Kay. "Back to the Future: The Story of Squeak, A Practical
Smalltalk Written in Itself " Proc. OOPSLA 1997.

2. Krasner, G. and S. T. Pope. "A Cookbook for the
Model-View-Controller User Interface Paradigm in Small-
talk-80." Journal of Object-Oriented Programming 1(3),
1988.

3. Maloney, J. and Smith, R., "Directness and Liveness in
the Morphic User Interface Construction Environment,"
Proc. UIST '95 .

4. Pope, S. T., N. Harter, and K. Pier. "A Navigator for
UNIX." 1989 ACM SIGCHI video collection.

5. Pope, S. T. "An Introduction to MODE." in S. T. Pope,
ed. The Well-Tempered Object: Musical Applications of
Object-Oriented Software Technology. MIT Press, 1991.

6. Roads, C., S. T. Pope, G. DePoli, and A. Piccialli, eds.
Musical Signal Processing. Swets & Zeitlinger, 1997.


